Investigating Enteric Fever
Research type
Research Study
Full title
Investigating the mechanisms and determinants of systemic and mucosal immunity to Salmonella Typhi and Salmonella Paratyphi A in naïve and previously exposed individuals – A challenge and rechallenge study.
IRAS ID
152600
Contact name
Andrew Pollard
Contact email
Sponsor organisation
University of Oxford
Clinicaltrials.gov Identifier
Research summary
Summary of Research
Enteric fever, an infection characterised by diarrhoea and rash, is most often caused by a bacteria called Salmonella enterica. After ingesting contaminated food or drink, the Salmonellae travel first to the gut, then the bloodstream, from where they can infect other parts of the body. Antibiotics are used to kill the bacteria, but with increasing rates of antibiotic resistance, this treatment is becoming less effective.Two Salmonella variants, Typhi and Paratyphi, cause over 30 million cases of enteric fever and more than 200,000 deaths per year, mostly in developing countries. While improved hygiene and sanitation should eventually eliminate enteric fever, reduction of the disease burden in the medium term is achievable through effective vaccination.
Vaccines likely to be available for mass vaccination are effective only against those Salmonella strains that bear the Vi polysaccaharide capsule protein. Strains that do not have these capsule proteins, or have no capsule, will not be affected by vaccination and could 'fill' the space vacated by the capsulated strains. Indeed, enteric fever caused by S. Paratyphi A which does not carry the Vi protein, has risen during the past decade and accounts for more than half of all cases in some areas.
Thus it is important that effective vaccines are available to protect against infection by both capsulated and non-capsulated Salmonella enterica. To develop such vaccines, we need a complete understanding of the human immune response to both types, including the contribution of immunity in the gut and the bloodstream, immune response to bacterial surface proteins, and the role of antibodies. How much cross-protection there is between the types of typhoidal Salmonellae after natural infection or vaccination is not known, but this is critical to vaccine development.
This project aims to fill in the knowledge gaps highlighted, by fully characterising the infection process and immune response in enteric fever.Summary of Results
In this study, we assessed whether previous infection with the bacteria Salmonella Typhi and Salmonella Paratyphi protected against second infections. Healthy volunteers who had been previously infected with these bacteria in earlier human challenge studies were challenged for a second time. We compared the rate of infection in the re-challenge group with healthy volunteers who were challenged for the first time. We found that previous infection was associated with a lower rate of second infections and longer time to disease but was not associated with complete protection from disease. Some individuals appeared to be more resistant to developing infection on both occasions. Previous infection with Salmonella Typhi did not appear to protect against later infection with Salmonella Paratyphi and vice-versa. Antibody responses and clinical symptoms were similar in between first and second infections. These results and future studies could help us to better understand immunity to these bacteria and help the development of new vaccines for Salmonella Typhi and Paratyphi.Abstract
Enteric fever is a systemic infection caused by Salmonella Typhi or Paratyphi A. In many endemic areas, these serovars co-circulate and can cause multiple infection-episodes in childhood. Prior exposure is thought to confer partial, but incomplete, protection against subsequent attacks of enteric fever. Empirical data to support this hypothesis are limited, and there are few studies describing the occurrence of heterologous-protection between these closely related serovars. We performed a challenge-re-challenge study using a controlled human infection model (CHIM) to investigate the extent of infection-derived immunity to Salmonella Typhi or Paratyphi A infection. We recruited healthy volunteers into two groups: naïve volunteers with no prior exposure to Salmonella Typhi/Paratyphi A and volunteers previously-exposed to Salmonella Typhi or Paratyphi A in earlier CHIM studies. Within each group, participants were randomised 1:1 to oral challenge with either Salmonella Typhi (104 CFU) or Paratyphi A (103 CFU). The primary objective was to compare the attack rate between naïve and previously challenged individuals, defined as the proportion of participants per group meeting the diagnostic criteria of temperature of ≥38°C persisting for ≥12 hours and/or S. Typhi/Paratyphi bacteraemia up to day 14 post challenge. The attack-rate in participants who underwent homologous re-challenge with Salmonella Typhi was reduced compared with challenged naïve controls, although this reduction was not statistically significant (12/27[44%] vs. 12/19[63%]; Relative risk 0.70; 95% CI 0.41–1.21; p = 0.24). Homologous re-challenge with Salmonella Paratyphi A also resulted in a lower attack-rate than was seen in challenged naïve controls (3/12[25%] vs. 10/18[56%]; RR0.45; 95% CI 0.16–1.30; p = 0.14). Evidence of protection was supported by a post hoc analysis in which previous exposure was associated with an approximately 36% and 57% reduced risk of typhoid or paratyphoid disease respectively on re-challenge. Individuals who did not develop enteric fever on primary exposure were significantly more likely to be protected on re-challenge, compared with individuals who developed disease on primary exposure. Heterologous re-challenge with Salmonella Typhi or Salmonella Paratyphi A was not associated with a reduced attack rate following challenge. Within the context of the model, prior exposure was not associated with reduced disease severity, altered microbiological profile or boosting of humoral immune responses. We conclude that prior Salmonella Typhi and Paratyphi A exposure may confer partial but incomplete protection against subsequent infection, but with a comparable clinical and microbiological phenotype. There is no demonstrable cross-protection between these serovars, consistent with the co-circulation of Salmonella Typhi and Paratyphi A. Collectively, these data are consistent with surveillance and modelling studies that indicate multiple infections can occur in high transmission settings, supporting the need for vaccines to reduce the burden of disease in childhood and achieve disease control.REC name
South Central - Oxford A Research Ethics Committee
REC reference
14/SC/1204
Date of REC Opinion
30 Oct 2014
REC opinion
Further Information Favourable Opinion